756 lines
30 KiB
Python
756 lines
30 KiB
Python
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
||
# except for the third-party components listed below.
|
||
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
||
# in the repsective licenses of these third-party components.
|
||
# Users must comply with all terms and conditions of original licenses of these third-party
|
||
# components and must ensure that the usage of the third party components adheres to
|
||
# all relevant laws and regulations.
|
||
|
||
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
||
# their software and algorithms, including trained model weights, parameters (including
|
||
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
||
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
||
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
||
|
||
import os
|
||
import random
|
||
import shutil
|
||
import time
|
||
from glob import glob
|
||
from pathlib import Path
|
||
|
||
import gradio as gr
|
||
import torch
|
||
import trimesh
|
||
import uvicorn
|
||
from fastapi import FastAPI
|
||
from fastapi.staticfiles import StaticFiles
|
||
import uuid
|
||
|
||
from hy3dgen.shapegen.utils import logger
|
||
|
||
MAX_SEED = int(1e7)
|
||
|
||
|
||
def get_example_img_list():
|
||
print('Loading example img list ...')
|
||
return sorted(glob('./assets/example_images/**/*.png', recursive=True))
|
||
|
||
|
||
def get_example_txt_list():
|
||
print('Loading example txt list ...')
|
||
txt_list = list()
|
||
for line in open('./assets/example_prompts.txt', encoding='utf-8'):
|
||
txt_list.append(line.strip())
|
||
return txt_list
|
||
|
||
|
||
def get_example_mv_list():
|
||
print('Loading example mv list ...')
|
||
mv_list = list()
|
||
root = './assets/example_mv_images'
|
||
for mv_dir in os.listdir(root):
|
||
view_list = []
|
||
for view in ['front', 'back', 'left', 'right']:
|
||
path = os.path.join(root, mv_dir, f'{view}.png')
|
||
if os.path.exists(path):
|
||
view_list.append(path)
|
||
else:
|
||
view_list.append(None)
|
||
mv_list.append(view_list)
|
||
return mv_list
|
||
|
||
|
||
def gen_save_folder(max_size=200):
|
||
os.makedirs(SAVE_DIR, exist_ok=True)
|
||
|
||
# 获取所有文件夹路径
|
||
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
|
||
|
||
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
|
||
if len(dirs) >= max_size:
|
||
# 按创建时间排序,最久的排在前面
|
||
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
|
||
shutil.rmtree(oldest_dir)
|
||
print(f"Removed the oldest folder: {oldest_dir}")
|
||
|
||
# 生成一个新的 uuid 文件夹名称
|
||
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
|
||
os.makedirs(new_folder, exist_ok=True)
|
||
print(f"Created new folder: {new_folder}")
|
||
|
||
return new_folder
|
||
|
||
|
||
def export_mesh(mesh, save_folder, textured=False, type='glb'):
|
||
if textured:
|
||
path = os.path.join(save_folder, f'textured_mesh.{type}')
|
||
else:
|
||
path = os.path.join(save_folder, f'white_mesh.{type}')
|
||
if type not in ['glb', 'obj']:
|
||
mesh.export(path)
|
||
else:
|
||
mesh.export(path, include_normals=textured)
|
||
return path
|
||
|
||
|
||
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
||
if randomize_seed:
|
||
seed = random.randint(0, MAX_SEED)
|
||
return seed
|
||
|
||
|
||
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
|
||
# Remove first folder from path to make relative path
|
||
if textured:
|
||
related_path = f"./textured_mesh.glb"
|
||
template_name = './assets/modelviewer-textured-template.html'
|
||
output_html_path = os.path.join(save_folder, f'textured_mesh.html')
|
||
else:
|
||
related_path = f"./white_mesh.glb"
|
||
template_name = './assets/modelviewer-template.html'
|
||
output_html_path = os.path.join(save_folder, f'white_mesh.html')
|
||
offset = 50 if textured else 10
|
||
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f:
|
||
template_html = f.read()
|
||
|
||
with open(output_html_path, 'w', encoding='utf-8') as f:
|
||
template_html = template_html.replace('#height#', f'{height - offset}')
|
||
template_html = template_html.replace('#width#', f'{width}')
|
||
template_html = template_html.replace('#src#', f'{related_path}/')
|
||
f.write(template_html)
|
||
|
||
rel_path = os.path.relpath(output_html_path, SAVE_DIR)
|
||
iframe_tag = f'<iframe src="/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>'
|
||
print(
|
||
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}')
|
||
|
||
return f"""
|
||
<div style='height: {height}; width: 100%;'>
|
||
{iframe_tag}
|
||
</div>
|
||
"""
|
||
|
||
|
||
def _gen_shape(
|
||
caption=None,
|
||
image=None,
|
||
mv_image_front=None,
|
||
mv_image_back=None,
|
||
mv_image_left=None,
|
||
mv_image_right=None,
|
||
steps=50,
|
||
guidance_scale=7.5,
|
||
seed=1234,
|
||
octree_resolution=256,
|
||
check_box_rembg=False,
|
||
num_chunks=200000,
|
||
randomize_seed: bool = False,
|
||
):
|
||
if not MV_MODE and image is None and caption is None:
|
||
raise gr.Error("Please provide either a caption or an image.")
|
||
if MV_MODE:
|
||
if mv_image_front is None and mv_image_back is None and mv_image_left is None and mv_image_right is None:
|
||
raise gr.Error("Please provide at least one view image.")
|
||
image = {}
|
||
if mv_image_front:
|
||
image['front'] = mv_image_front
|
||
if mv_image_back:
|
||
image['back'] = mv_image_back
|
||
if mv_image_left:
|
||
image['left'] = mv_image_left
|
||
if mv_image_right:
|
||
image['right'] = mv_image_right
|
||
|
||
seed = int(randomize_seed_fn(seed, randomize_seed))
|
||
|
||
octree_resolution = int(octree_resolution)
|
||
if caption: print('prompt is', caption)
|
||
save_folder = gen_save_folder()
|
||
stats = {
|
||
'model': {
|
||
'shapegen': f'{args.model_path}/{args.subfolder}',
|
||
'texgen': f'{args.texgen_model_path}',
|
||
},
|
||
'params': {
|
||
'caption': caption,
|
||
'steps': steps,
|
||
'guidance_scale': guidance_scale,
|
||
'seed': seed,
|
||
'octree_resolution': octree_resolution,
|
||
'check_box_rembg': check_box_rembg,
|
||
'num_chunks': num_chunks,
|
||
}
|
||
}
|
||
time_meta = {}
|
||
|
||
if image is None:
|
||
start_time = time.time()
|
||
try:
|
||
image = t2i_worker(caption)
|
||
except Exception as e:
|
||
raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.")
|
||
time_meta['text2image'] = time.time() - start_time
|
||
|
||
# remove disk io to make responding faster, uncomment at your will.
|
||
# image.save(os.path.join(save_folder, 'input.png'))
|
||
if MV_MODE:
|
||
start_time = time.time()
|
||
for k, v in image.items():
|
||
if check_box_rembg or v.mode == "RGB":
|
||
img = rmbg_worker(v.convert('RGB'))
|
||
image[k] = img
|
||
time_meta['remove background'] = time.time() - start_time
|
||
else:
|
||
if check_box_rembg or image.mode == "RGB":
|
||
start_time = time.time()
|
||
image = rmbg_worker(image.convert('RGB'))
|
||
time_meta['remove background'] = time.time() - start_time
|
||
|
||
# remove disk io to make responding faster, uncomment at your will.
|
||
# image.save(os.path.join(save_folder, 'rembg.png'))
|
||
|
||
# image to white model
|
||
start_time = time.time()
|
||
|
||
generator = torch.Generator()
|
||
generator = generator.manual_seed(int(seed))
|
||
outputs = i23d_worker(
|
||
image=image,
|
||
num_inference_steps=steps,
|
||
guidance_scale=guidance_scale,
|
||
generator=generator,
|
||
octree_resolution=octree_resolution,
|
||
num_chunks=num_chunks,
|
||
output_type='mesh'
|
||
)
|
||
time_meta['shape generation'] = time.time() - start_time
|
||
logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time))
|
||
|
||
tmp_start = time.time()
|
||
mesh = export_to_trimesh(outputs)[0]
|
||
time_meta['export to trimesh'] = time.time() - tmp_start
|
||
|
||
stats['number_of_faces'] = mesh.faces.shape[0]
|
||
stats['number_of_vertices'] = mesh.vertices.shape[0]
|
||
|
||
stats['time'] = time_meta
|
||
main_image = image if not MV_MODE else image['front']
|
||
return mesh, main_image, save_folder, stats, seed
|
||
|
||
|
||
def generation_all(
|
||
caption=None,
|
||
image=None,
|
||
mv_image_front=None,
|
||
mv_image_back=None,
|
||
mv_image_left=None,
|
||
mv_image_right=None,
|
||
steps=50,
|
||
guidance_scale=7.5,
|
||
seed=1234,
|
||
octree_resolution=256,
|
||
check_box_rembg=False,
|
||
num_chunks=200000,
|
||
randomize_seed: bool = False,
|
||
):
|
||
start_time_0 = time.time()
|
||
mesh, image, save_folder, stats, seed = _gen_shape(
|
||
caption,
|
||
image,
|
||
mv_image_front=mv_image_front,
|
||
mv_image_back=mv_image_back,
|
||
mv_image_left=mv_image_left,
|
||
mv_image_right=mv_image_right,
|
||
steps=steps,
|
||
guidance_scale=guidance_scale,
|
||
seed=seed,
|
||
octree_resolution=octree_resolution,
|
||
check_box_rembg=check_box_rembg,
|
||
num_chunks=num_chunks,
|
||
randomize_seed=randomize_seed,
|
||
)
|
||
path = export_mesh(mesh, save_folder, textured=False)
|
||
|
||
# tmp_time = time.time()
|
||
# mesh = floater_remove_worker(mesh)
|
||
# mesh = degenerate_face_remove_worker(mesh)
|
||
# logger.info("---Postprocessing takes %s seconds ---" % (time.time() - tmp_time))
|
||
# stats['time']['postprocessing'] = time.time() - tmp_time
|
||
|
||
tmp_time = time.time()
|
||
mesh = face_reduce_worker(mesh)
|
||
logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time))
|
||
stats['time']['face reduction'] = time.time() - tmp_time
|
||
|
||
tmp_time = time.time()
|
||
textured_mesh = texgen_worker(mesh, image)
|
||
logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time))
|
||
stats['time']['texture generation'] = time.time() - tmp_time
|
||
stats['time']['total'] = time.time() - start_time_0
|
||
|
||
textured_mesh.metadata['extras'] = stats
|
||
path_textured = export_mesh(textured_mesh, save_folder, textured=True)
|
||
model_viewer_html_textured = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
|
||
textured=True)
|
||
if args.low_vram_mode:
|
||
torch.cuda.empty_cache()
|
||
return (
|
||
gr.update(value=path),
|
||
gr.update(value=path_textured),
|
||
model_viewer_html_textured,
|
||
stats,
|
||
seed,
|
||
)
|
||
|
||
|
||
def shape_generation(
|
||
caption=None,
|
||
image=None,
|
||
mv_image_front=None,
|
||
mv_image_back=None,
|
||
mv_image_left=None,
|
||
mv_image_right=None,
|
||
steps=50,
|
||
guidance_scale=7.5,
|
||
seed=1234,
|
||
octree_resolution=256,
|
||
check_box_rembg=False,
|
||
num_chunks=200000,
|
||
randomize_seed: bool = False,
|
||
):
|
||
start_time_0 = time.time()
|
||
mesh, image, save_folder, stats, seed = _gen_shape(
|
||
caption,
|
||
image,
|
||
mv_image_front=mv_image_front,
|
||
mv_image_back=mv_image_back,
|
||
mv_image_left=mv_image_left,
|
||
mv_image_right=mv_image_right,
|
||
steps=steps,
|
||
guidance_scale=guidance_scale,
|
||
seed=seed,
|
||
octree_resolution=octree_resolution,
|
||
check_box_rembg=check_box_rembg,
|
||
num_chunks=num_chunks,
|
||
randomize_seed=randomize_seed,
|
||
)
|
||
stats['time']['total'] = time.time() - start_time_0
|
||
mesh.metadata['extras'] = stats
|
||
|
||
path = export_mesh(mesh, save_folder, textured=False)
|
||
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH)
|
||
if args.low_vram_mode:
|
||
torch.cuda.empty_cache()
|
||
return (
|
||
gr.update(value=path),
|
||
model_viewer_html,
|
||
stats,
|
||
seed,
|
||
)
|
||
|
||
|
||
def build_app():
|
||
title = 'Hunyuan3D-2: High Resolution Textured 3D Assets Generation'
|
||
if MV_MODE:
|
||
title = 'Hunyuan3D-2mv: Image to 3D Generation with 1-4 Views'
|
||
if 'mini' in args.subfolder:
|
||
title = 'Hunyuan3D-2mini: Strong 0.6B Image to Shape Generator'
|
||
if TURBO_MODE:
|
||
title = title.replace(':', '-Turbo: Fast ')
|
||
|
||
title_html = f"""
|
||
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px">
|
||
|
||
{title}
|
||
</div>
|
||
<div align="center">
|
||
Tencent Hunyuan3D Team
|
||
</div>
|
||
<div align="center">
|
||
<a href="https://github.com/tencent/Hunyuan3D-2">Github</a>  
|
||
<a href="http://3d-models.hunyuan.tencent.com">Homepage</a>  
|
||
<a href="https://3d.hunyuan.tencent.com">Hunyuan3D Studio</a>  
|
||
<a href="#">Technical Report</a>  
|
||
<a href="https://huggingface.co/Tencent/Hunyuan3D-2"> Pretrained Models</a>  
|
||
</div>
|
||
"""
|
||
custom_css = """
|
||
.app.svelte-wpkpf6.svelte-wpkpf6:not(.fill_width) {
|
||
max-width: 1480px;
|
||
}
|
||
.mv-image button .wrap {
|
||
font-size: 10px;
|
||
}
|
||
|
||
.mv-image .icon-wrap {
|
||
width: 20px;
|
||
}
|
||
|
||
"""
|
||
|
||
with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.0', analytics_enabled=False, css=custom_css) as demo:
|
||
gr.HTML(title_html)
|
||
|
||
with gr.Row():
|
||
with gr.Column(scale=3):
|
||
with gr.Tabs(selected='tab_img_prompt') as tabs_prompt:
|
||
with gr.Tab('Image Prompt', id='tab_img_prompt', visible=not MV_MODE) as tab_ip:
|
||
image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290)
|
||
|
||
with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I and not MV_MODE) as tab_tp:
|
||
caption = gr.Textbox(label='Text Prompt',
|
||
placeholder='HunyuanDiT will be used to generate image.',
|
||
info='Example: A 3D model of a cute cat, white background')
|
||
with gr.Tab('MultiView Prompt', visible=MV_MODE) as tab_mv:
|
||
# gr.Label('Please upload at least one front image.')
|
||
with gr.Row():
|
||
mv_image_front = gr.Image(label='Front', type='pil', image_mode='RGBA', height=140,
|
||
min_width=100, elem_classes='mv-image')
|
||
mv_image_back = gr.Image(label='Back', type='pil', image_mode='RGBA', height=140,
|
||
min_width=100, elem_classes='mv-image')
|
||
with gr.Row():
|
||
mv_image_left = gr.Image(label='Left', type='pil', image_mode='RGBA', height=140,
|
||
min_width=100, elem_classes='mv-image')
|
||
mv_image_right = gr.Image(label='Right', type='pil', image_mode='RGBA', height=140,
|
||
min_width=100, elem_classes='mv-image')
|
||
|
||
with gr.Row():
|
||
btn = gr.Button(value='Gen Shape', variant='primary', min_width=100)
|
||
btn_all = gr.Button(value='Gen Textured Shape',
|
||
variant='primary',
|
||
visible=HAS_TEXTUREGEN,
|
||
min_width=100)
|
||
|
||
with gr.Group():
|
||
file_out = gr.File(label="File", visible=False)
|
||
file_out2 = gr.File(label="File", visible=False)
|
||
|
||
with gr.Tabs(selected='tab_options' if TURBO_MODE else 'tab_export'):
|
||
with gr.Tab("Options", id='tab_options', visible=TURBO_MODE):
|
||
gen_mode = gr.Radio(label='Generation Mode',
|
||
info='Recommendation: Turbo for most cases, Fast for very complex cases, Standard seldom use.',
|
||
choices=['Turbo', 'Fast', 'Standard'], value='Turbo')
|
||
decode_mode = gr.Radio(label='Decoding Mode',
|
||
info='The resolution for exporting mesh from generated vectset',
|
||
choices=['Low', 'Standard', 'High'],
|
||
value='Standard')
|
||
with gr.Tab('Advanced Options', id='tab_advanced_options'):
|
||
with gr.Row():
|
||
check_box_rembg = gr.Checkbox(value=True, label='Remove Background', min_width=100)
|
||
randomize_seed = gr.Checkbox(label="Randomize seed", value=True, min_width=100)
|
||
seed = gr.Slider(
|
||
label="Seed",
|
||
minimum=0,
|
||
maximum=MAX_SEED,
|
||
step=1,
|
||
value=1234,
|
||
min_width=100,
|
||
)
|
||
with gr.Row():
|
||
num_steps = gr.Slider(maximum=100,
|
||
minimum=1,
|
||
value=5 if 'turbo' in args.subfolder else 30,
|
||
step=1, label='Inference Steps')
|
||
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
|
||
with gr.Row():
|
||
cfg_scale = gr.Number(value=5.0, label='Guidance Scale', min_width=100)
|
||
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000,
|
||
label='Number of Chunks', min_width=100)
|
||
with gr.Tab("Export", id='tab_export'):
|
||
with gr.Row():
|
||
file_type = gr.Dropdown(label='File Type', choices=SUPPORTED_FORMATS,
|
||
value='glb', min_width=100)
|
||
reduce_face = gr.Checkbox(label='Simplify Mesh', value=False, min_width=100)
|
||
export_texture = gr.Checkbox(label='Include Texture', value=False,
|
||
visible=False, min_width=100)
|
||
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000,
|
||
label='Target Face Number')
|
||
with gr.Row():
|
||
confirm_export = gr.Button(value="Transform", min_width=100)
|
||
file_export = gr.DownloadButton(label="Download", variant='primary',
|
||
interactive=False, min_width=100)
|
||
|
||
with gr.Column(scale=6):
|
||
with gr.Tabs(selected='gen_mesh_panel') as tabs_output:
|
||
with gr.Tab('Generated Mesh', id='gen_mesh_panel'):
|
||
html_gen_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
|
||
with gr.Tab('Exporting Mesh', id='export_mesh_panel'):
|
||
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
|
||
with gr.Tab('Mesh Statistic', id='stats_panel'):
|
||
stats = gr.Json({}, label='Mesh Stats')
|
||
|
||
with gr.Column(scale=3 if MV_MODE else 2):
|
||
with gr.Tabs(selected='tab_img_gallery') as gallery:
|
||
with gr.Tab('Image to 3D Gallery', id='tab_img_gallery', visible=not MV_MODE) as tab_gi:
|
||
with gr.Row():
|
||
gr.Examples(examples=example_is, inputs=[image],
|
||
label=None, examples_per_page=18)
|
||
|
||
with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery', visible=HAS_T2I and not MV_MODE) as tab_gt:
|
||
with gr.Row():
|
||
gr.Examples(examples=example_ts, inputs=[caption],
|
||
label=None, examples_per_page=18)
|
||
with gr.Tab('MultiView to 3D Gallery', id='tab_mv_gallery', visible=MV_MODE) as tab_mv:
|
||
with gr.Row():
|
||
gr.Examples(examples=example_mvs,
|
||
inputs=[mv_image_front, mv_image_back, mv_image_left, mv_image_right],
|
||
label=None, examples_per_page=6)
|
||
|
||
gr.HTML(f"""
|
||
<div align="center">
|
||
Activated Model - Shape Generation ({args.model_path}/{args.subfolder}) ; Texture Generation ({'Hunyuan3D-2' if HAS_TEXTUREGEN else 'Unavailable'})
|
||
</div>
|
||
""")
|
||
if not HAS_TEXTUREGEN:
|
||
gr.HTML("""
|
||
<div style="margin-top: 5px;" align="center">
|
||
<b>Warning: </b>
|
||
Texture synthesis is disable due to missing requirements,
|
||
please install requirements following <a href="https://github.com/Tencent/Hunyuan3D-2?tab=readme-ov-file#install-requirements">README.md</a>to activate it.
|
||
</div>
|
||
""")
|
||
if not args.enable_t23d:
|
||
gr.HTML("""
|
||
<div style="margin-top: 5px;" align="center">
|
||
<b>Warning: </b>
|
||
Text to 3D is disable. To activate it, please run `python gradio_app.py --enable_t23d`.
|
||
</div>
|
||
""")
|
||
|
||
tab_ip.select(fn=lambda: gr.update(selected='tab_img_gallery'), outputs=gallery)
|
||
if HAS_T2I:
|
||
tab_tp.select(fn=lambda: gr.update(selected='tab_txt_gallery'), outputs=gallery)
|
||
|
||
btn.click(
|
||
shape_generation,
|
||
inputs=[
|
||
caption,
|
||
image,
|
||
mv_image_front,
|
||
mv_image_back,
|
||
mv_image_left,
|
||
mv_image_right,
|
||
num_steps,
|
||
cfg_scale,
|
||
seed,
|
||
octree_resolution,
|
||
check_box_rembg,
|
||
num_chunks,
|
||
randomize_seed,
|
||
],
|
||
outputs=[file_out, html_gen_mesh, stats, seed]
|
||
).then(
|
||
lambda: (gr.update(visible=False, value=False), gr.update(interactive=True), gr.update(interactive=True),
|
||
gr.update(interactive=False)),
|
||
outputs=[export_texture, reduce_face, confirm_export, file_export],
|
||
).then(
|
||
lambda: gr.update(selected='gen_mesh_panel'),
|
||
outputs=[tabs_output],
|
||
)
|
||
|
||
btn_all.click(
|
||
generation_all,
|
||
inputs=[
|
||
caption,
|
||
image,
|
||
mv_image_front,
|
||
mv_image_back,
|
||
mv_image_left,
|
||
mv_image_right,
|
||
num_steps,
|
||
cfg_scale,
|
||
seed,
|
||
octree_resolution,
|
||
check_box_rembg,
|
||
num_chunks,
|
||
randomize_seed,
|
||
],
|
||
outputs=[file_out, file_out2, html_gen_mesh, stats, seed]
|
||
).then(
|
||
lambda: (gr.update(visible=True, value=True), gr.update(interactive=False), gr.update(interactive=True),
|
||
gr.update(interactive=False)),
|
||
outputs=[export_texture, reduce_face, confirm_export, file_export],
|
||
).then(
|
||
lambda: gr.update(selected='gen_mesh_panel'),
|
||
outputs=[tabs_output],
|
||
)
|
||
|
||
def on_gen_mode_change(value):
|
||
if value == 'Turbo':
|
||
return gr.update(value=5)
|
||
elif value == 'Fast':
|
||
return gr.update(value=10)
|
||
else:
|
||
return gr.update(value=30)
|
||
|
||
gen_mode.change(on_gen_mode_change, inputs=[gen_mode], outputs=[num_steps])
|
||
|
||
def on_decode_mode_change(value):
|
||
if value == 'Low':
|
||
return gr.update(value=196)
|
||
elif value == 'Standard':
|
||
return gr.update(value=256)
|
||
else:
|
||
return gr.update(value=384)
|
||
|
||
decode_mode.change(on_decode_mode_change, inputs=[decode_mode], outputs=[octree_resolution])
|
||
|
||
def on_export_click(file_out, file_out2, file_type, reduce_face, export_texture, target_face_num):
|
||
if file_out is None:
|
||
raise gr.Error('Please generate a mesh first.')
|
||
|
||
print(f'exporting {file_out}')
|
||
print(f'reduce face to {target_face_num}')
|
||
if export_texture:
|
||
mesh = trimesh.load(file_out2)
|
||
save_folder = gen_save_folder()
|
||
path = export_mesh(mesh, save_folder, textured=True, type=file_type)
|
||
|
||
# for preview
|
||
save_folder = gen_save_folder()
|
||
_ = export_mesh(mesh, save_folder, textured=True)
|
||
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
|
||
textured=True)
|
||
else:
|
||
mesh = trimesh.load(file_out)
|
||
mesh = floater_remove_worker(mesh)
|
||
mesh = degenerate_face_remove_worker(mesh)
|
||
if reduce_face:
|
||
mesh = face_reduce_worker(mesh, target_face_num)
|
||
save_folder = gen_save_folder()
|
||
path = export_mesh(mesh, save_folder, textured=False, type=file_type)
|
||
|
||
# for preview
|
||
save_folder = gen_save_folder()
|
||
_ = export_mesh(mesh, save_folder, textured=False)
|
||
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
|
||
textured=False)
|
||
print(f'export to {path}')
|
||
return model_viewer_html, gr.update(value=path, interactive=True)
|
||
|
||
confirm_export.click(
|
||
lambda: gr.update(selected='export_mesh_panel'),
|
||
outputs=[tabs_output],
|
||
).then(
|
||
on_export_click,
|
||
inputs=[file_out, file_out2, file_type, reduce_face, export_texture, target_face_num],
|
||
outputs=[html_export_mesh, file_export]
|
||
)
|
||
|
||
return demo
|
||
|
||
|
||
if __name__ == '__main__':
|
||
import argparse
|
||
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
|
||
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
|
||
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
|
||
parser.add_argument('--port', type=int, default=8080)
|
||
parser.add_argument('--host', type=str, default='0.0.0.0')
|
||
parser.add_argument('--device', type=str, default='cuda')
|
||
parser.add_argument('--mc_algo', type=str, default='mc')
|
||
parser.add_argument('--cache-path', type=str, default='gradio_cache')
|
||
parser.add_argument('--enable_t23d', action='store_true')
|
||
parser.add_argument('--disable_tex', action='store_true')
|
||
parser.add_argument('--enable_flashvdm', action='store_true')
|
||
parser.add_argument('--compile', action='store_true')
|
||
parser.add_argument('--low_vram_mode', action='store_true')
|
||
args = parser.parse_args()
|
||
|
||
SAVE_DIR = args.cache_path
|
||
os.makedirs(SAVE_DIR, exist_ok=True)
|
||
|
||
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||
MV_MODE = 'mv' in args.model_path
|
||
TURBO_MODE = 'turbo' in args.subfolder
|
||
|
||
HTML_HEIGHT = 690 if MV_MODE else 650
|
||
HTML_WIDTH = 500
|
||
HTML_OUTPUT_PLACEHOLDER = f"""
|
||
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'>
|
||
<div style='text-align: center; font-size: 16px; color: #6b7280;'>
|
||
<p style="color: #8d8d8d;">Welcome to Hunyuan3D!</p>
|
||
<p style="color: #8d8d8d;">No mesh here.</p>
|
||
</div>
|
||
</div>
|
||
"""
|
||
|
||
INPUT_MESH_HTML = """
|
||
<div style='height: 490px; width: 100%; border-radius: 8px;
|
||
border-color: #e5e7eb; order-style: solid; border-width: 1px;'>
|
||
</div>
|
||
"""
|
||
example_is = get_example_img_list()
|
||
example_ts = get_example_txt_list()
|
||
example_mvs = get_example_mv_list()
|
||
|
||
SUPPORTED_FORMATS = ['glb', 'obj', 'ply', 'stl']
|
||
|
||
HAS_TEXTUREGEN = False
|
||
if not args.disable_tex:
|
||
try:
|
||
from hy3dgen.texgen import Hunyuan3DPaintPipeline
|
||
|
||
texgen_worker = Hunyuan3DPaintPipeline.from_pretrained(args.texgen_model_path)
|
||
if args.low_vram_mode:
|
||
texgen_worker.enable_model_cpu_offload()
|
||
# Not help much, ignore for now.
|
||
# if args.compile:
|
||
# texgen_worker.models['delight_model'].pipeline.unet.compile()
|
||
# texgen_worker.models['delight_model'].pipeline.vae.compile()
|
||
# texgen_worker.models['multiview_model'].pipeline.unet.compile()
|
||
# texgen_worker.models['multiview_model'].pipeline.vae.compile()
|
||
HAS_TEXTUREGEN = True
|
||
except Exception as e:
|
||
print(e)
|
||
print("Failed to load texture generator.")
|
||
print('Please try to install requirements by following README.md')
|
||
HAS_TEXTUREGEN = False
|
||
|
||
HAS_T2I = True
|
||
if args.enable_t23d:
|
||
from hy3dgen.text2image import HunyuanDiTPipeline
|
||
|
||
t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled', device=args.device)
|
||
HAS_T2I = True
|
||
|
||
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
|
||
Hunyuan3DDiTFlowMatchingPipeline
|
||
from hy3dgen.shapegen.pipelines import export_to_trimesh
|
||
from hy3dgen.rembg import BackgroundRemover
|
||
|
||
rmbg_worker = BackgroundRemover()
|
||
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
|
||
args.model_path,
|
||
subfolder=args.subfolder,
|
||
use_safetensors=True,
|
||
device=args.device,
|
||
)
|
||
if args.enable_flashvdm:
|
||
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
|
||
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
|
||
if args.compile:
|
||
i23d_worker.compile()
|
||
|
||
floater_remove_worker = FloaterRemover()
|
||
degenerate_face_remove_worker = DegenerateFaceRemover()
|
||
face_reduce_worker = FaceReducer()
|
||
|
||
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2
|
||
# create a FastAPI app
|
||
app = FastAPI()
|
||
# create a static directory to store the static files
|
||
static_dir = Path(SAVE_DIR).absolute()
|
||
static_dir.mkdir(parents=True, exist_ok=True)
|
||
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static")
|
||
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True)
|
||
|
||
if args.low_vram_mode:
|
||
torch.cuda.empty_cache()
|
||
demo = build_app()
|
||
app = gr.mount_gradio_app(app, demo, path="/")
|
||
uvicorn.run(app, host=args.host, port=args.port, workers=1)
|